콘텐츠 본문
논문 국내 국내전문학술지(KCI급) 딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법
- 학술지 구분 국내전문학술지(KCI급)
- 게재년월 2022-06
- 저자명 김정윤, 이승호
- 학술지명 전기전자학회 논문지
- 발행처명 한국전기전자학회
- 발행국가 국내
- 논문언어 한국어
- 전체저자수 2
- 연구분야 공학 > 전자/정보통신공학
첨부 파일
논문 초록 (Abstract)
본 논문에서는 딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D mesh 재구축 기법을 제안한다. 제안한 기법은 기존의 방식과 다른 다음과 같은 독창성이 있다. 첫 번째, 기존의 근처의 가까운 점들을 연결하여 모서리 또는 면을 구축하는 방식 과 다르게 딥러닝 네트워크을 통하여 구체의 꼭짓점의 위치를 사물의 3D 포인트 클라우드와 매우 유사하게 수정한다. 3D 포인트 클라우드를 이용하므로 메모리가 적게 필요하며 구체의 꼭짓점에 오프셋 값 사이에 덧셈 연산만을 수행하기 때문에 더 빠른 연산이 가능하다. 두 번째, 수정한 꼭짓점에 구체의 면 정보를 씌워 3D mesh를 재구축한다. 구체의 꼭짓점의 위치를 수정하여 생성한 3D 포인트 클라우드의 점들의 간격이 일정하지 않을 때에도 이미 점들 사이의 연결 여부를 나타내는 구체의 면 정보라는 3D mesh의 면 정보를 가지고 있어 표현의 단순화나 결손을 방지할 수 있다. 제안하는 기법의 객관적인 신뢰성을 평가하기 위해 공개된 표준 데이터셋인 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 IoU 값이 0.581로, chamfer distance 값은 0.212로 산출되었다. IoU 값은 수치가 높을수록, chamfer distance 값은 수치가 낮을수록 우 수한 결과를 나타내므로 다른 논문에서 발표한 기법들보다 3D mesh 재구축의 결과에서 성능의 효율성이 입증되었다.