주요 메뉴 바로가기 보조 메뉴 바로가기 본문 바로가기

콘텐츠 본문

논문 국내 국내전문학술지(KCI급) 딥 러닝 및 칼만 필터를 이용한 객체 추적 방법

연구성과 설명 사진
  • 학술지 구분 국내전문학술지(KCI급)
  • 게재년월 2019-05
  • 저자명 최해철,김기철,손소희,김민섭,전진우,이인재,차지훈
  • 학술지명 방송공학회 논문지
  • 발행처명 한국방송미디어공학회
  • 발행국가 국내
  • 논문언어 한국어
  • 전체저자수 7

논문 초록 (Abstract)

딥 러닝의 대표 알고리즘에는 영상 인식에 주로 사용되는 CNN(Convolutional Neural Networks), 음성인식 및 자연어 처리에 주로 사용되는 RNN(Recurrent Neural Networks) 등이 있다. 이 중 CNN은 데이터로부터 자동으로 특징을 학습하는 알고리즘으로 특징 맵을 생성하는 필터까지 학습할 수 있어 영상 인식 분야에서 우수한 성능을 보이면서 주류를 이루게 되었다. 이후, 객체 탐지 분야에서는 CNN의 성능을 향상하고자 R-CNN 등 다양한 알고리즘이 등장하였으며, 최근에는 검출 속도 향상을 위해 YOLO(You Only Look Once), SSD(Single Shot Multi-box Detector) 등의 알고리즘이 제안되고 있다. 하지만 이러한 딥러닝 기반 탐지 네트워크는 정지 영상에서 탐지의 성공 여부를 결정하기 때문에 동영상에서의 안정적인 객체 추적 및 탐지를 위해서는 별도의 추적 기능이 필요하다. 따라서 본 논문에서는 동영상에서의 객체 추적 및 탐지 성능 향상을 위해 딥 러닝 기반 탐지 네트워크에 칼만 필터를 결합한 방법을 제안한다. 탐지 네트워크는 실시간 처리가 가능한 YOLO v2를 이용하였으며, 실험 결과 제안한 방법은 기존 YOLO v2 네트워크에 비교하여 7.7%의 IoU 성능 향상 결과를 보였고 FHD 영상에서 20 fps의 처리 속도를 보였다.