주요 메뉴 바로가기 보조 메뉴 바로가기 본문 바로가기

콘텐츠 본문

논문 국내 국내전문학술지(KCI급) 2차원 동영상의 3차원 변환을 위한 깊이 단서의 신뢰성 기반 적응적 깊이 융합

  • 학술지 구분 국내전문학술지(KCI급)
  • 게재년월 2012-11
  • 저자명 한찬희, 최해철, 이시웅
  • 학술지명 한국콘텐츠학회논문지
  • 발행처명 한국콘텐츠학회
  • 발행국가 국내
  • 논문언어 한국어
  • 전체저자수 3

논문 초록 (Abstract)

3차원 동영상은 다양한 응용분야들에서 차세대 콘텐츠로 큰 주목을 받고 있다. 2D-to-3D 변환은 3차원 동영상의 시대로 넘어가는 과도기 동안에 3차원 동영상 콘텐츠의 부족현상을 해결하기위한 강력한 기술로 여겨지고 있다. 일반적으로 2D-to-3D 변환을 위해서는 2차원 동영상 각 장면의 깊이영상을 추정/생성한 후 깊이 영상 기반 랜더링 (DIBR : Depth Image Based Rendering) 기술을 이용하여 스테레오 동영상을 합성한다. 본 논문은 2차원 동영상 내 존재하는 다양한 변환 단서들을 통합하는 새로운 깊이 융합 기법을 제안한다. 우선, 알맞은 깊이 융합을 위해 몇몇 단서가 현재 장면을 효과적으로 표현할 수 있는 지 아닌 지 검사된다. 그 후, 신뢰성 검사의 결과를 기반으로 현재 장면은 4개의 유형 중 하나로 분류된다. 마지막으로 최종 깊이 영상을 생성하기 위해 신뢰할 수 있는 깊이 단서들을 조합하는 장면 적응적 깊이 융합이 수행된다. 실험 결과를 통해 각각의 단서가 장면 유형에 따라 타당하게 활용되었고 최종 깊이 영상이 현재 장면을 효과적으로 표현할 수 있는 단서들에 의해 생성되었음을 관찰할 수 있다.