주요 메뉴 바로가기 보조 메뉴 바로가기 본문 바로가기

콘텐츠 본문

논문 국내 국내전문학술지(KCI급) 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발

  • 학술지 구분 국내전문학술지(KCI급)
  • 게재년월 2023-03
  • 저자명 김홍직, 이원복, 이승호
  • 학술지명 한국전기전자학회 논문지
  • 발행처명 한국전기전자학회
  • 발행국가 국내
  • 논문언어 한국어
  • 전체저자수 3
  • 연구분야 공학 > 전자/정보통신공학
첨부 파일

논문 초록 (Abstract)

본 논문에서는 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조를 개발한다. 제안하는 복합 미생물 배 양기는 수집한 복합 미생물 데이터에 대해 복합 미생물 데이터 전처리, 복합 미생물 데이터 구조 변환, 딥러닝 네트워크 설계, 설계 한 딥러닝 네트워크 학습, 시제품에 적용되는 GUI 개발 등으로 구성된다. 복합 미생물 데이터 전처리에서는 미생물 배양에 필요한 당밀, 영양제, 식물엑기스, 소금 등의 양에 대해 원-핫 인코딩을 실시하며, 배양된 결과로 측정된 pH 농도와 미생물의 셀 수에 대해 최대-최소 정규화 방법을 사용하여 데이터를 전처리한다. 복합 미생물 데이터 구조 변환에서는 전처리된 데이터를 물 온도와 미생물 의 셀 수를 연결하여 그래프 구조로 변환 후, 인접 행렬과 속성 정보로 나타내어 딥러닝 네트워크의 입력 데이터로 사용한다. 딥러 닝 네트워크 설계에서는 그래프 구조에 특화된 그래프 합성곱 네트워크를 설계하여 복합 미생물 데이터를 학습시킨다. 설계한 딥러 닝 네트워크는 Cosine 손실함수를 사용하여 학습 시에 발생하는 오차를 최소화하는 방향으로 학습을 진행한다. 시제품에 적용되는 GUI 개발은 사용자가 선택하는 물 온도에 따라 목표하는 pH 농도(3.8 이하) 복합 미생물의 셀 수(10^8이상)를 배양시키기 적합한 순으로 나타낸다. 제안된 미생물 배양기의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, pH 농도의 경우 평균 3.7로, 복합 미생물의 셀 수는 1.7 × 10^8 으로 측정되었다. 따라서, 본 논문에서 제안한 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양 기를 위한 딥러닝 구조의 효용성이 입증되었다.