주요 메뉴 바로가기 보조 메뉴 바로가기 본문 바로가기

콘텐츠 본문

논문 국내 국내전문학술지(KCI급) FMCW 레이다 기반의 포인트 클라우드와 LSTM을 이용한 자동 핸드 제스처 영역 추출 및 인식 기법

  • 학술지 구분 국내전문학술지(KCI급)
  • 게재년월 2023-12
  • 저자명 라승탁, 이승호
  • 학술지명 한국전기전자학회 논문지
  • 발행처명 한국전기전자학회
  • 발행국가 국내
  • 논문언어 한국어
  • 전체저자수 2
  • 연구분야 공학 > 전자/정보통신공학
첨부 파일

논문 초록 (Abstract)

본 논문에서는 FMCW 레이다 기반의 포인트 클라우드와 LSTM을 이용한 자동 핸드 제스처 영역 추출 및 인식 기법을 제안한다.제안한 기법은 기존의 방식과 다른 다음과 같은 독창성이 있다. 첫 번째, 기존의 range-doppler 등의 2D 이미지를 입력 벡터로하는 방식과 다르게 시계열 형태의 포인트 클라우드 입력 벡터는 레이다 전방에서 발생하는 시간에 따른 움직임을 좌표계 형태로 인식할 수 있는 직관적인 입력 데이터이다. 두 번째, 입력 벡터의 크기가 작기 때문에 인식에 쓰이는 딥러닝 모델도 가볍게 설계할수 있다. 제안하는 기법의 수행 과정은 다음과 같다. FMCW 레이다로 측정된 거리, 속도, 각도 정보를 활용해 x, y, z 좌표 형식과도플러 속도 정보를 포함한 포인트 클라우드를 활용한다. 제스처 영역은 속도 정보를 통해 얻어진 도플러 포인트를 이용하여 제스처의 시작과 끝 지점을 파악해 자동으로 핸드 제스처 영역을 추출하게 된다. 추출된 제스처 영역의 시점에 해당하는 시계열 형태의포인트 클라우드는 최종적으로 본 논문에서 사용한 LSTM 딥러닝 모델의 학습 및 인식에 활용되게 된다. 제안하는 기법의 객관적인신뢰성을 평가하기 위해 다른 딥러닝 모델들과 MAE를 산출하는 실험과 기존 기법들과 인식률을 산출하는 실험을 수행하여 비교하였다. 실험 결과, 시계열 형태의 포인트 클라우드 입력 벡터 + LSTM 딥러닝 모델의 MAE 값이 0.262, 인식률이 97.5%로 산출되었다. MAE는 낮을수록, 인식률은 높을수록 우수한 결과를 나타내므로 본 논문에서 제안한 기법의 효율성이 입증되었다.