콘텐츠 본문
논문 국내 국내전문학술지(KCI급) 수입물품의 품목 분류를 위한 멀티모달 표현 학습
- 학술지 구분 국내전문학술지(KCI급)
- 게재년월 2023
- 저자명 이앞길, 최근호, 김건우
- 학술지명 지능정보연구
- 발행처명 한국지능정보시스템학회
- 발행국가 국내
- 논문언어 한국어
- 전체저자수 3
논문 초록 (Abstract)
우리나라 관세청은 효과적인 원스톱(One-stop) 업무 처리가 가능한 전자통관 시스템으로 효율적으로 업무처리를 하고 있지만 기술의 발달과 비대면 서비스의 증가로 매년 수출입건수가 증가하고 있으며 그에 따른 업무량도 폭증하고 있는 실정으로 이에 따른 보다 효과적인 방법이 매우 필요하다. 수입과 수출은 모든 물품에 대한 분류 및 세율 적용을 위한 HS Code(Harmonized system code)가 필요하고 해당 HS Code를 분류하는 품목 분류는 전문지식과 경험이 필요한 업무 난이 도가 높고 관세 통관절차에서 중요한 부분이다. 이에 본 연구는 품목 분류 의뢰서의 물품명, 물품상세설명, 물품 이미지 등의 다양한 유형의 데이터 정보를 활용하여 멀티모달 표현 학습(Multimodal representation learning) 기반으로 정보를 잘반영할 수 있도록 딥러닝 모델을 학습 및 구축하여 HS Code를 분류 및 추천해 줌으로써 관세 업무 부담을 줄이고 신속한 품목 분류를 하여 통관절차에 도움을 줄 것으로 기대한다.