콘텐츠 본문
논문 해외 국제전문학술지(SCI급) Micro-Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium-Ion Batteries
- 학술지 구분 국제전문학술지(SCI급)
- 게재년월 2016-06
- 저자명 Joonam Park, Jiseon Jeong, Yunju Lee, Min Oh, Myung‐Hyun Ryou, Yong Min Lee
- 학술지명 Advanced Materials Interfaces
- 발행처명 wiley
- 발행국가 해외
- 논문언어 외국어
- 전체저자수 6
- 논문 다운로드 링크(외부) https://doi.org/10.1002/admi.201600140
- 연구분야 공학 > 화학공학
논문 초록 (Abstract)
Repressing uncontrolled lithium (Li) dendrite growth is the top priority for enabling the reliable use of Li metal secondary batteries. On the other hand, the technique controlling the metal plating behavior during metal plating indeed has been considered very difficult to achieve. For instance, how can one plate metal ions on the favored selected region during plating? The present study describes how to achieve this goal, i.e., dendrite-free Li deposition, by mechanical surface modification using a simple stamping technique, where finite-element method simulation using COMSOL Multiphysics was used to design the micro-patterns of the stamp. After stamping, the transferred micro-patterns on Li metal anodes suppress dendrite growth during repeated Li deposition/stripping processes and exhibit improved long-term cycling stability of Li metal anodes. During the repeated Li plating processes, the pattern holes are filled by the liquid-like and/or granular forms of Li metal without resulting Li dendrite growth. These holes are then reversibly drained during the Li stripping process, reverting to their original dimension. This study investigated the correlation of this unique Li plating/stripping behavior as a function of the current density.